Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 404
1.
Stem Cell Res Ther ; 14(1): 366, 2023 12 13.
Article En | MEDLINE | ID: mdl-38093328

BACKGROUND: Induced pluripotent stem cell (iPSC)-derived cell therapies are an interesting new area in the field of regenerative medicine. One of the approaches to decrease the costs of iPSC-derived therapies is the use of allogenic homozygous human leukocyte antigen (HLA)-matched donors to generate iPSC lines and to build a clinical-grade iPSC bank covering a high percentage of the Spanish population. METHODS: The Spanish Stem Cell Transplantation Registry was screened for cord blood units (CBUs) homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes. Seven donors were selected with haplotypes covering 21.37% of the haplotypes of the Spanish population. CD34-positive hematopoietic progenitors were isolated from the mononuclear cell fraction of frozen cord blood units from each donor by density gradient centrifugation and further by immune magnetic labeling and separation using purification columns. Purified CD34 + cells were reprogrammed to iPSCs by transduction with the CTS CytoTune-iPS 2.1 Sendai Reprogramming Kit. RESULTS: The iPSCs generated from the 7 donors were expanded, characterized, banked and registered. Master cell banks (MCBs) and working cell banks (WCBs) from the iPSCs of each donor were produced under GMP conditions in qualified clean rooms. CONCLUSIONS: Here, we present the first clinical-grade, iPSC haplobank in Spain made from CD34 + cells from seven cord blood units homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes within the Spanish population. We describe their generation by transduction with Sendai viral vectors and their GMP-compliant expansion and banking. These haplolines will constitute starting materials for advanced therapy medicinal product development (ATMP).


Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , HLA-DRB1 Chains/metabolism , HLA Antigens/metabolism , HLA-B Antigens/metabolism , HLA-A Antigens/metabolism
2.
Int J Biol Macromol ; 253(Pt 7): 127199, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37793526

The tremendous success of immune checkpoint blockade (ICB) therapy has raised the great demand for the development of predictive biomarkers. A recent cancer genomic study suggested that human leukocyte antigen (HLA)-B*44:02 and HLA-B*15:01 alleles may act as potential biomarkers for ICB therapies, however, the underlying molecular mechanisms remain largely elusive. Here, we investigated the molecular origins of differential responses to ICB therapies for four representative HLA alleles: HLA-B*44:02, HLA-B*15:01, HLA-B*07:02, and HLA-B*53:01, using extensive all-atom molecular dynamics simulations. We first demonstrated that the relatively more rigid peptide-binding groove of HLA-B*15:01, than those in the other three HLA alleles, may result in challenges in its recognition with T-cell receptors. Specifically, the "bridge" structure in HLA-B*15:01 is stabilized through both intramolecular electrostatic interactions between the HLA residues and intermolecular interactions between the HLA and the antigenic peptide. These observations were further confirmed by in silico mutagenesis studies, as well as simulations of several other HLA-B*15:01-peptide complexes. By contrast, the "bridge" structure is either completely absent in HLA-B*44:02 or easily perturbed in HLA-B*07:02 and HLA-B*53:01. Our findings provide detailed structural and mechanistic insights into how HLA genotype influences ICB responses and may have important implications for developing immune markers.


HLA-B Antigens , Neoplasms , Humans , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Peptides/chemistry , Immunity , Biomarkers
3.
J Immunol ; 211(9): 1298-1307, 2023 11 01.
Article En | MEDLINE | ID: mdl-37737643

The extreme polymorphisms of HLA class I proteins result in structural variations in their peptide binding sites to achieve diversity in Ag presentation. External factors could independently constrict or alter HLA class I peptide repertoires. Such effects of the assembly factor tapasin were assessed for HLA-B*44:05 (Y116) and a close variant, HLA-B*44:02 (D116), which have low and high tapasin dependence, respectively, for their cell surface expression. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with C-terminal tryptophans and higher predicted affinities are preferentially selected by tapasin, coincident with reduced frequencies of peptides with other C-terminal amino acids, including leucine. Comparisons of the HLA-B*44:05 and HLA-B*44:02 peptidomes indicate the expected structure-based alterations near the peptide C termini, but also C-terminal amino acid frequency and predicted affinity changes among the unique and shared peptide groups for B*44:02 and B*44:05. Overall, these findings indicate that the presence of tapasin and the tapasin dependence of assembly alter HLA class I peptide-binding preferences at the peptide C terminus. The particular C-terminal amino acid preferences that are altered by tapasin are expected to be determined by the intrinsic peptide-binding specificities of HLA class I allotypes. Additionally, the findings suggest that tapasin deficiency and reduced tapasin dependence expand the permissive affinities of HLA class I-bound peptides, consistent with prior findings that HLA class I allotypes with low tapasin dependence have increased breadth of CD8+ T cell epitope presentation and are more protective in HIV infections.


HIV Infections , Tryptophan , Humans , HLA-B44 Antigen/metabolism , Tryptophan/metabolism , Peptides/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Immunoglobulins/metabolism , Protein Binding , HLA-B Antigens/genetics , HLA-B Antigens/metabolism
4.
J Biol Chem ; 299(10): 105136, 2023 Oct.
Article En | MEDLINE | ID: mdl-37543367

Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved ß2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.


Antigen Presentation , Chickens , HLA-B Antigens , Membrane Transport Proteins , Molecular Chaperones , Animals , Humans , HLA-B Antigens/metabolism , Immunoglobulins/metabolism , Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Epitopes/metabolism , Protein Engineering
5.
Cell Immunol ; 387: 104707, 2023 05.
Article En | MEDLINE | ID: mdl-36933326

MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.


HLA-B7 Antigen , Histocompatibility Antigens Class I , Antigen Presentation , HLA-B Antigens/chemistry , HLA-B Antigens/metabolism , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/metabolism , Peptides/metabolism , Humans
6.
Nature ; 612(7941): 771-777, 2022 12.
Article En | MEDLINE | ID: mdl-36477533

Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public ß-chain variable region-complementary-determining region 3ß (BV9-CDR3ß) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3ß TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.


Autoimmunity , HLA-B Antigens , Peptides , Receptors, Antigen, T-Cell , Humans , Autoantigens/chemistry , Autoantigens/immunology , Autoantigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Synovial Fluid/immunology , Spondylitis, Ankylosing/immunology , Uveitis, Anterior/immunology , Peptide Library , Cross Reactions , Amino Acid Motifs
7.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Article En | MEDLINE | ID: mdl-36295572

Background and Objectives: Ankylosing spondylitis (AS) is a chronic inflammatory disease and is highly linked with the expression of the human leukocytic antigen-B*27 (HLA-B*27) genotype. HLA-B*27 heavy chain (B*27-HC) has an innate characteristic to slowly fold, resulting in the accumulation of the misfolded B*27-HC and the formation of homo-oligomeric B*27-HC molecules. The homo-oligomeric B*27-HC can act as a ligand of KIR3DL2. Interaction of the homo-oligomeric B*27-HC molecules with KIR3DL2 will trigger the survival and activation of KIR3DL2-positive NK cells. However, the effects of homo-oligomeric B*27-HC molecules associated with KIR3DL2 on the cytotoxic activity of NK cells and their cytokine expressions remain unknown. Materials and Methods: HLA-B*-2704-HC was overexpressed in the HMy2.C1R (C1R) cell line. Western blotting and quantitative RT-PCR were used to analyze the protein expression and cytokine expression, respectively, when C1R-B*-2704 cells that overexpress B*2704-HC were co-cultured with NK-92MI cells. Flow cytometry was used to analyze the cytotoxicity mediated by NK-92MI cells. Results: Our results revealed that NK-92MI cells up-regulated the expression of perforin and enhanced the cytotoxic activity via augmentation of PI3K/AKT signaling after co-culturing with C1R-B*2704 cells. Suppression of the dimerized B*27-HC formation or treatment with an inhibitor of PI3K, LY294002, or with an anti-B*27-HC monoclonal antibody can reduce the perforin expression of NK-92MI after co-culturing with C1R-B*-2704. Co-culturing with C1R-B*-2704 cells suppressed the TNF-α and IL6 expressions of NK-92MI cells. Conclusion: Stimulation of NK cell-mediated cytotoxicity by homo-oligomeric B*27-HC molecules may contribute to the pathogenesis of AS.


Phosphatidylinositol 3-Kinases , Spondylitis, Ankylosing , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt , Tumor Necrosis Factor-alpha/metabolism , Ligands , Perforin/metabolism , Interleukin-6/metabolism , Receptors, KIR3DL2/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Antibodies, Monoclonal
8.
Chem Biol Interact ; 368: 110220, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36243146

BACKGROUND: Recently, Trichloroethylene (TCE) induced TCE hypersensitivity syndrome (THS) has attracted the attention of many researchers in the field of environmental and occupational health. Studies have revealed that Human leukocyte antigen (HLA) polymorphisms were the important genetic determinants of the diseases, but the potential molecular mechanism remains unclear. OBJECTIVE: This study aimed to investigate the association between THS and HLA at the molecular level. METHOD: We chose the human B-lymphoblastoid cell line Hmy2.C1R transfected with cDNA of HLA-B*13:01 and HLA-B*13:02 to analyze the characteristics of HLA-B-binding peptides and investigate the effect of TCE on the binding affinity of peptides to the HLA-B molecules. Further, the mathematical model was used to identify the possible interaction between TCE and HLA-B*13:01 or HLA-B*13:02 molecule. RESULTS: 54 HLA-B*13:01-binding peptides and 85 HLA-B*13:02-binding peptides were identified. Comparing the protein sequences of HLA-B*13:01 and HLA-B*13:02, amino acids were different at positions 94, 95 and 97. The results of the binding affinity of self-peptides to HLA molecules in the presence of TCE showed that TCE significantly decreased the binding affinity of peptides to HLA-B*13:01 only, but did not affect that of HLA-B*13:02. Molecular docking model showed that there was a unique high-affinity binding mode between TCE and HLA-B*13:01 (but not HLA-B*13:02), and the binding site located in the region of F pocket, suggesting that the unique structure of the F pocket of HLA-B*13:01 might provide the possibility of binding TCE. The pathogenesis of interaction between HLA-B*13:01 and TCE might belong to the model of the alteration of the HLA-presented self-peptide repertoire. DISCUSSION: This study explored the molecular mechanism of the association between THS and HLA-B*13:01, and had important implications for understanding the role of gene-environment interaction in the development of complex environment-related diseases.


Hypersensitivity , Occupational Health , Trichloroethylene , Humans , Gene-Environment Interaction , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Molecular Docking Simulation , Peptides , Trichloroethylene/toxicity , Hypersensitivity/epidemiology
9.
Biochem Soc Trans ; 50(5): 1329-1339, 2022 10 31.
Article En | MEDLINE | ID: mdl-36111814

Understanding the basis of the immune determinants controlling disease outcome is critical to provide better care to patients and could be exploited for therapeutics and vaccine design. The discovery of the human immunodeficiency virus (HIV) virus as the causing agent of acquired immunodeficiency syndrome (AIDS) decades ago, led to a tremendous amount of research. Among the findings, it was discovered that some rare HIV+ individuals, called HIV controllers (HICs), had the ability to control the virus and keep a low viral load without the need of treatment. This ability allows HICs to delay or avoid progression to AIDS. HIV control is strongly associated with the expression of human leukocyte antigen (HLA) alleles in HICs. From the HIV protective HLAs described, HLA-B57 is the most frequent in HIC patients. HLA-B57 can present a large range of highly conserved Gag-derived HIV peptides to CD8+ T cells and natural killer (NK) cells, both the focus of this review. So far there are limited differences in the immune response strength, magnitude, or receptor repertoire towards HIV epitopes that could explain viral control in HICs. Interestingly, some studies revealed that during early infection the large breadth of the immune response towards HIV mutants in HLA-B57+ HIC patients, might in turn influence the disease outcome.


Acquired Immunodeficiency Syndrome , HIV Infections , HIV-1 , Humans , HLA-B Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/metabolism
10.
Biomolecules ; 12(8)2022 08 08.
Article En | MEDLINE | ID: mdl-36008984

The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.


Antigens, Differentiation/metabolism , HLA-B Antigens , Uterine Cervical Neoplasms , Female , HLA-B Antigens/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA Splicing Factors , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors/genetics , Uterine Cervical Neoplasms/genetics
11.
Cell Host Microbe ; 30(8): 1173-1185.e8, 2022 08 10.
Article En | MEDLINE | ID: mdl-35841889

Human leukocyte antigen (HLA) alleles have been linked to HIV disease progression and attributed to differences in cytotoxic T lymphocyte (CTL) epitope representation. These findings are largely based on treatment-naive individuals of European and African ancestry. We assessed HLA associations with HIV-1 outcomes in 1,318 individuals from Thailand and found HLA-B∗46:01 (B∗46) associated with accelerated disease in three independent cohorts. B∗46 had no detectable effect on HIV-specific T cell responses, but this allele is unusual in containing an HLA-C epitope that binds inhibitory receptors on natural killer (NK) cells. Unbiased transcriptomic screens showed increased NK cell activation in people with HIV, without B∗46, and simultaneous single-cell profiling of surface proteins and transcriptomes revealed a NK cell subset primed for increased responses in the absence of B∗46. These findings support a role for NK cells in HIV pathogenesis, revealed by the unique properties of the B∗46 allele common only in Asia.


HIV Infections , HLA-B Antigens , Disease Progression , Epitopes , HIV Infections/metabolism , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Humans , Killer Cells, Natural , Phenotype
12.
Toxicol In Vitro ; 82: 105383, 2022 Aug.
Article En | MEDLINE | ID: mdl-35568130

The combination of certain human leukocyte antigen (HLA) polymorphisms with administration of certain drugs shows a strong correlation with developing drug hypersensitivity. Examples of typical combinations are HLA-B*57:01 with abacavir and HLA-B*15:02 with carbamazepine. However, despite belonging to the same serotype, HLA-B*57:03 and HLA-B*15:01 are not associated with drug hypersensitivity. Recent studies have shown that several HLA polymorphisms are associated with multiple drugs rather than a single drug, all resulting in drug hypersensitivity. In this study, we compared the molecular structures and intracellular localization of HLA-B*57:01, HLA-B*58:01, and HLA-B*15:02, which pose risks for developing drug hypersensitivity, as well as HLA-B*57:03 and HLA-B*15:01 that do not present such risks. We found that HLA molecules posing risks have a low affinity for the subunit ß2-microglobulin; notably, the weak hydrogen bond formed via Gln96 of the HLA molecule contributes to this behavior. We also clarified that these HLA molecules are easily accumulated in the endoplasmic reticulum, exhibiting a low expression on the cell surface. Considering that these hypersensitivity risk-associated HLA molecules form complexes with ß2-microglobulin and peptides in the endoplasmic reticulum, we assumed that their low complex formation ability in the endoplasmic reticulum facilitates the interaction with multiple drugs.


Drug Hypersensitivity , Drug-Related Side Effects and Adverse Reactions , Carbamazepine/toxicity , Drug Hypersensitivity/genetics , HLA Antigens/genetics , HLA-B Antigens/chemistry , HLA-B Antigens/metabolism , Humans
13.
Pharmacogenomics J ; 22(1): 69-74, 2022 02.
Article En | MEDLINE | ID: mdl-34671112

PURPOSE: The Pharmacogenomics (PGx) Profile Service was a proof-of-concept project to implement PGx in patient care at Mayo Clinic. METHODS: Eighty-two healthy individuals aged 18 and older underwent genotyping of CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLCO1B1, HLA-B*58:01, and VKORC1. A PGx pharmacist was involved in ordering, meeting with patients, interpreting, reviewing, and documenting results. RESULTS: Ninety three percent were CYP1A2 rapid metabolizers, 92% CYP3A4 normal metabolizers, and 88% CYP3A5 poor metabolizers; phenotype frequencies for CYP2C19 and CYP2D6 varied. Seventy-three percent had normal functioning SLCO1B1 transporter, 4% carried the HLA-B*58:01 risk variant, and 35% carried VKORC1 and CYP2C9 variants that increased warfarin sensitivity. CONCLUSION: Pre-emptive PGx testing offered medication improvement opportunity in 56% of participants for commonly used medications. A collaborative approach involving a PGx pharmacist integrated within a clinical practice with regards to utility of PGx results allowed for implementation of the PGx Profile Service. KEY POINTS: The Mayo Clinic PGx (PGx) Profile Service was a proof-of-concept project to utilize PGx testing as another clinical tool to enhance medication selection and decrease serious adverse reactions or medication failures. Over one-half of participants in the pilot using the PGx Profile Service were predicted to benefit from pre-emptive PGx testing to guide pharmacotherapy. PGx pharmacists played a crucial role in the PGx Profile Service by educating participants, identifying medication-gene interactions, and providing evidence-based (CPIC and DPWG) PGx recommendations for past, current, and future medication us.


Pharmacogenetics/methods , Pharmacogenomic Testing , Adolescent , Adult , Aged , Cytochrome P-450 Enzyme System/genetics , Female , Genetic Testing , Genotype , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Healthy Volunteers , Heterozygote , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Male , Middle Aged , Pharmacokinetics , Phenotype , Retrospective Studies , Young Adult
14.
J Immunol ; 208(1): 3-15, 2022 01 01.
Article En | MEDLINE | ID: mdl-34880106

CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.


Complementarity Determining Regions/genetics , HIV Infections/immunology , HIV-1/physiology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/physiology , Alleles , Antigen Presentation , Antigens, Viral/metabolism , Cells, Cultured , Cross Reactions , Disease Progression , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/metabolism , Genetic Variation , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-B27 Antigen/genetics , HLA-B27 Antigen/metabolism , Humans , Lymphocyte Activation
15.
Immunobiology ; 227(1): 152127, 2022 01.
Article En | MEDLINE | ID: mdl-34968777

Head and neck squamous cell carcinoma (HNSCC) arises from the malignant mucosal epithelium of the oral cavity, pharynx, and larynx. Natural killer (NK) cells are fundamental immune cells shaping the anti-HNSCC response. Elucidation of the regulatory mechanisms of NK cell activity is crucial for understanding anti-HNSCC immunity. In this study, we characterized the expression and function of HLA-B-associated transcript 3 (Bat3) in NK cells in a mouse HNSCC model. We found that Bat3 expression was down-regulated in HNSCC-infiltrating NK cells. SCC VII, the mouse HNSCC cell line used in this model, induced Bat3 downregulation through direct cell-to-cell contact. By applying lentivirus-mediated silencing of Bat3, we discovered that Bat3 knockdown impaired the tumoricidal effect of NK cells on SCC VII cells and Hepa1-6RAE1, a genetically modified liver cancer cell line. Furthermore, Bat3 knockdown resulted in a significant decrease in perforin, granzyme B, interferon-γ, and tumor necrosis factor-α in NK cells upon co-culture with SCC VII cells. Further investigations revealed that Bat3 knockdown promoted the binding of T cell immunoglobulin and mucin domain-containing-3 (Tim-3) to Fyn and thus activated the Tim-3 signaling. Blockade of Tim-3 with a neutralizing Tim-3 antibody counteracted the effect of Bat3 knockdown on NK cell cytotoxicity. Taken together, our data suggest that HNSCC might down-regulate Bat3 expression to augment Tim-3 signaling and ultimately suppress the tumoricidal activity of NK cells. This study unveils a novel mechanism by which HNSCC evades NK cell killing, and sheds light on designing novel anti-HNSCC immunotherapy targeting Bat3 and Tim-3 signaling.


Head and Neck Neoplasms , Hepatitis A Virus Cellular Receptor 2 , Molecular Chaperones , Nuclear Proteins , Squamous Cell Carcinoma of Head and Neck , Animals , Disease Models, Animal , Down-Regulation , HLA-B Antigens/metabolism , Head and Neck Neoplasms/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Immunoglobulins/metabolism , Killer Cells, Natural , Mice , Molecular Chaperones/genetics , Mucins/metabolism , Nuclear Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , T-Lymphocytes
16.
Immunohorizons ; 5(8): 687-702, 2021 08 25.
Article En | MEDLINE | ID: mdl-34433624

Tyrosine kinase inhibitor (TKI)-treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of KIR3DL1 and HLAs were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance-conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of KIR3DL1*01502 into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient-derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner.


Gene Expression Regulation, Leukemic/immunology , Killer Cells, Natural/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Receptors, KIR3DL1/immunology , Alleles , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Dasatinib/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/immunology , Gene Expression Regulation, Leukemic/drug effects , Gene Expression Regulation, Leukemic/genetics , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Humans , K562 Cells , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutation , Protein Kinase Inhibitors/pharmacology , Receptors, KIR3DL1/genetics , Receptors, KIR3DL1/metabolism
18.
Commun Biol ; 4(1): 825, 2021 07 01.
Article En | MEDLINE | ID: mdl-34211107

Extracellular vesicles can modulate diverse processes ranging from proliferation and tissue repair, to chemo-resistance and cellular differentiation. With the advent of tissue and immunological targeting, extracellular vesicles are also increasingly viewed as promising vectors to deliver peptide-based cancer antigens to the human immune system. Despite the clinical relevance and therapeutic potential of such 'cell-free' approaches, the natural antigen presentation landscape exported in extracellular vesicles is still largely uncharted, due to the challenging nature of such preparations and analyses. In the context of therapeutic vesicle production, a critical evaluation of the similarity in vesicular antigen presentation is also urgently needed. In this work, we compared the HLA-I peptide ligandomes of extracellular vesicles against that of whole-cells of the same cell line. We found that extracellular vesicles not only over-represent HLA-B complexes and peptide ligands, but also cysteinylated peptides that may modulate immune responses. Collectively, these findings describe the pre-existing provision of vesicular HLA complexes that may be utilized to carry peptide vaccines, as well as the propensity for different peptide and post-translationally modified ligands to be presented, and will outline critical considerations in devising novel EV vaccination strategies.


Antigen Presentation/immunology , Cysteine/immunology , Extracellular Vesicles/immunology , HLA-B Antigens/immunology , Cell Line , Chromatography, Liquid/methods , Cysteine/metabolism , Extracellular Vesicles/metabolism , HLA-B Antigens/metabolism , Humans , Ligands , Peptides/immunology , Peptides/metabolism , Protein Processing, Post-Translational/immunology , Proteomics/methods , Tandem Mass Spectrometry/methods
19.
Front Immunol ; 12: 672737, 2021.
Article En | MEDLINE | ID: mdl-34093574

Abacavir hypersensitivity syndrome can occur in individuals expressing the HLA-B*57:01 major histocompatibility complex class I allotype when utilising the drug abacavir as a part of their anti-retroviral regimen. The drug is known to bind within the HLA-B*57:01 antigen binding cleft, leading to the selection of novel self-peptide ligands, thus provoking life-threatening immune responses. However, the sub-cellular location of abacavir binding and the mechanics of altered peptide selection are not well understood. Here, we probed the impact of abacavir on the assembly of HLA-B*57:01 peptide complexes. We show that whilst abacavir had minimal impact on the maturation or average stability of HLA-B*57:01 molecules, abacavir was able to differentially enhance the formation, selectively decrease the dissociation, and alter tapasin loading dependency of certain HLA-B*57:01-peptide complexes. Our data reveals a spectrum of abacavir mediated effects on the immunopeptidome which reconciles the heterogeneous functional T cell data reported in the literature.


Anti-HIV Agents/immunology , Dideoxynucleosides/immunology , Drug Hypersensitivity/immunology , HLA-B Antigens/immunology , T-Lymphocytes/immunology , Anti-HIV Agents/adverse effects , Cell Line , Dideoxynucleosides/adverse effects , HLA-B Antigens/metabolism , Humans , Kinetics , Lymphocyte Activation/immunology
20.
Sci Rep ; 11(1): 7932, 2021 04 12.
Article En | MEDLINE | ID: mdl-33846431

Human leukocyte antigen (HLA) class I-specific killer-cell immunoglobulin-like receptors (KIR) regulate natural killer (NK) cell function in eliminating malignancy. Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test the hypothesis that certain KIR-HLA combinations impairing NK-cytotoxicity predispose to BC risk, we analyzed KIR and HLA polymorphisms in 162 women with BC and 278 controls. KIR-Bx genotypes increased significantly in BC than controls (83.3% vs. 71.9%, OR 1.95), and the increase was more pronounced in advanced-cancer (OR 5.3). No difference was observed with inhibitory KIR (iKIR) and HLA-ligand combinations. The activating KIR (aKIR) and HLA-ligand combinations, 2DS1 + C2 (OR 2.98) and 3DS1 + Bw4 (OR 2.6), were significantly increased in advanced-BC. All patients with advanced-cancer carrying 2DS1 + C2 or 3DS1 + Bw4 also have their iKIR counterparts 2DL1 and 3DL1, respectively. Contrarily, the 2DL1 + C2 and 3DL1 + Bw4 pairs without their aKIR counterparts are significantly higher in controls. These data suggest that NK cells expressing iKIR to the cognate HLA-ligands in the absence of putative aKIR counterpart are instrumental in antitumor response. These data provide a new framework for improving the utility of genetic risk scores for individualized surveillance.


Breast Neoplasms/immunology , HLA-B Antigens/metabolism , HLA-C Antigens/metabolism , Receptors, KIR/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Case-Control Studies , Female , Haplotypes/genetics , Heterozygote , Humans , Ligands , Neoplasm Staging , Risk Factors
...